北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能电池市场正文

深度报告 | 燃料电池核心零部件国产化提速

2017-10-18 10:51来源:华泰证券研究所关键词:燃料电池电动汽车中国制造2025收藏点赞

投稿

我要投稿

气体扩散层:规模化生产工艺是研究重点

气体扩散层(GDL)起着分布反应气体、在电极和双极板之间传导电子和热量、与平衡电极表面水分的作用。对于气体扩散层,不仅有透气/透水性好、导电/导热性好、机械强度高、耐腐蚀性好等物理化学性质,还要具有易于规模生产和价格便宜等商业方面的要求。

碳纤维纸/布是一种广泛使用的扩散层材料,规模化生产工艺是研发重点。目前商业化碳纤维纸/布等材料从性能上已能够很好地满足要求,而气体扩散层是加工费用主导成本的部件,规模化生产将会带来大幅的成本削减,根据Strategic  Analysis  2014年发布的数据,当生产规模从1000套提升到50万套时,成本会从$2,661/套降到$102/套,因此开发扩散层大规模生产工艺是未来研究重点。

目前碳纸产品由几个国际大生产商垄断,如加拿大巴拉德、日本Toray和德国SGL。我国的碳纸开发生产落后于国外,国内上海和森公司有小批量碳纸产品,台湾碳能科技公司的碳纸产品价格较低,获得了一定市场认可;中国石油大学和东华大学也在从事相关研究。

燃料电池关键部件之二:空气循环系统

空气循环系统成本占电池系统22%,耗能占输出功率20~30%

空气循环系统主要由空气压缩机、膨胀机、电机、连接管道等组成,总成本占燃料电池系统的22%,工作能耗占燃料电池输出功率的20~30%。质子交换膜燃料电池(PEMFC)的系统工作原理:空气通过压缩机增压之后,经过加湿处理送入到燃料电池反应堆,在那里和来自于氢源的氢气发生电化学反应,输出电能用于动力输出。输入气体在消耗了部分氧气之后,压力有所下降,排出反应堆,通过分水,去雾之后,通过膨胀器从压力气体中回收部分压力能,将其转化为机械能反馈到空气压缩机,从而节省供气单元所需要的电能。

空气压缩机是保证燃料电池高效可靠运行的关键设备

Ø 氧分压决定了燃料电池的功率密度。在相同电流密度下,随着供气压力的提高,电池的输出电压也出现了相应的升高,从而提高了燃料电池的输出功率。

Ø  提高反应压力对于燃料电池内的水/热管理有明显的改进。燃料电池中的水管理的目的是保持燃料电池入口空气的湿润所需要的水量、电池内电化学反应所产生的水,以及从电堆出口回收的水的总和相平衡,一旦这个平衡被打破,燃料电池就无法正常工作。在低压的条件下,空气的含水量将增加,同时低压将减缓燃料电池的电化学反应,所以更多的水分被排出到大气中,水平衡就有可能被打破。

Ø  20%~30%的燃料电池输出功率将被用于提升空气的压力,占附加能耗的95%。以压缩机为主要部件的空气管理系统也就成为了除驱动电机之外燃料电池最大的能量消耗部件,其综合性能在很大程度上决定了装备燃料电池的电动汽车性能,因此研究高效、紧凑、可靠和低成本的空气管理系统就成为了当前车载燃料电池研究领域中的重要任务。

技术壁垒高,涡旋和双螺杆空压机是目前主流技术路线

由于燃料电池的特殊要求,供气循环系统有很多有待解决的技术难点,使目前广泛应用的工业压缩机无法满足燃料电池电动汽车的需求。一方面,为了保证质子交换膜具有良好的工作特性,要求供气系统供给燃料电池堆的压缩空气绝对干净。另一方面,为了保证PEMFC具有较好的综合性能,要求供气子系统能够根据燃料电池输出功率的大小及时调整供气量与供气压力,并具有结构紧凑,重量轻,噪声低,可靠性高,能量可回收等特点:

Ø  较高的能量转化率,在车辆行使过程中,空气压缩机工作的动力来源是燃料电池的电能输出,若压缩机占用较多的输出电能,必然会减少汽车的驱动功率从而影响整车的性能;

Ø  燃料电池中的质子交换膜要求压缩空气完全无油,并且具有一定的湿度,因此通常使用的喷油冷却压缩机就不适合应用在这一领域。需要提供压力相当高、低流量的干净空气,必须不含任何碳氢化合物,如油;

Ø 为了获得运行效率,压缩机需要在全负荷时的任何时间都能高效地工作,在宽的流量范围能都能高效工作,能够无延迟的调整燃料电池的功率输出;

Ø 车载环境要求压缩机部件在能够提供较大空气排量的同时具有非常小的质量、体积以及高可靠性;

Ø 燃料电池运行时无声,压缩机噪声必须控制;

Ø 对材料要求:为满足压缩机的低成本、低噪音和耐久性目标,必须为压缩机关键部件开发具有低成本、稳定摩擦性能以及耐磨的涂层和材料。

旋转容积式压缩机和涡轮式压缩机是目前的研究运用重点。各大类压缩机都各具特点,需要对其弱点进行研究并加以克服,从而满足燃料电池的需要。从效率和可靠性来看,涡轮和螺杆空气压缩机是目前被认为最优的两种技术路线,也是未来运用趋势:

Ø 螺杆压缩机:目前美国通用、Plug  Power、德国Xcellsis、加拿大Ballard等公司的燃料电池中都采用了螺杆压缩机压缩机/膨胀机供气系统。德国大众公司在Bora燃料电池发动机汽车上采用的喷水螺杆压缩机,是2002年国际燃料电池技术的重大进展之一;

Ø 涡旋压缩机:日本丰田(TOYOTA)、美国UTC等公司的燃料电池系统采用了涡旋机械作为其供气系统的核心部件。

燃料电池关键部件之三:氢气供给系统

氢气供给系统影响车辆的安全性与寿命

车载供氢系统包括压力流量调整元件、氢气泄漏传感器、供氢管路、控制系统、氢气再循环系统等(通常不包括储氢瓶)。供氢系统的工作过程可以分为加氢、储氢和输氢三个过程:加氢站的加氢系统通过单向阀向车载储氢瓶注入氢气;储氢瓶储存高纯度(99.999%)、高压力(35或70MPa)的氢气;燃料电池需要氢气时,经过减压/稳压阀后,压力降为所需要求,再通过电动调节阀、压力传感器、流量计和加湿器进入电堆进行反应,少量多余的氢气进入氢气再循环系统,或经过处理后排入大气。

优质供氢系统必须具备储氢量大、稳定性好、安全性高等特点,才能保证燃料电池车的高续航里程及耐久性。

Ø  供氢的稳定性好有助于燃料电池耐久性:储氢气瓶氢气的出口压力为35/70MPa,燃料电池车的电池反应堆要求氢气压力为远小于出口压力,而压力调节不当易造成质子交换膜的永久损坏,因此氢气压力调整装置要保证压力稳定性;

Ø  安全性高是必备条件:氢气是一种易燃易爆的气体,为防止氢气出现泄露、超压、超温和过流等情况,保证系统正常工作,需要对系统的压力、温度和氢气流量进行检测,采用起安全作用的元件或措施。

氢气再循环装置:影响氢气利用率、解决水管理问题

氢气再循环装置可提高氢气利用率,同时解决电堆水管理问题,影响燃料电池发动机的耐久性。为了保证燃料电池的正常运行,通常采用氢气循环的方法,把电池内部生成的水带出电池后经过水气分离装置,将液态水分出后,再将氢气循环回到电池重复使用。一方面可以实现把反应气尾气的水分带入电池起到增湿作用;另一方面可以提高氢气在燃料电池阳极流道内流速,防止阳极水的累积,避免阳极水淹,此外还能提高氢气利用率。

氢气循环供应系统有多种形式,目前比较常见的是氢气循环泵和回氢引射装置。有的燃料电池单独使用这两种装置中的一种,有的同时使用两种装置;

Ø 氢气循环泵:采用电机变频控制电机,使回流能力根据不同功率进行响应,可以有效改善氢循环、灵活性高,但是需消耗额外的电以维持其运转。

Ø 引射器:不需要消耗额外的电力,且结构简单因此运行可靠、寿命较长,但是回流能力是固定的,因此只能在一定的输出功率范围内有效。

原标题:深度报告 | 燃料电池核心零部件国产化提速
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

燃料电池查看更多>电动汽车查看更多>中国制造2025查看更多>