北极星

搜索历史清空

  • 水处理
您的位置:电力氢能氢能综合利用氢储能技术正文

电网氢储能场景下的固态储氢系统及储氢材料的技术指标研究

2017-11-09 13:04来源:电网技术关键词:氢储能电网氢储能固态储氢技术收藏点赞

投稿

我要投稿

4.6 氢化物生成焓

储氢材料吸收和释放氢的过程中要放热和吸热。储氢材料做储氢用时,从能源效率角度看,其生成热应该尽量小。材料在吸氢时要放出热量,放氢时又必须从外界获得热量,如果氢化物生成热太大,吸放氢时需要进行大量的热量传输,这对材料、系统的传热特性要求就高。若热量传输不及时,便会限制吸放氢反应的进行。

以HD/HC值作为评价基准,这里,HD是指氢化物生成焓,HC是指氢的燃烧热(为285.8 kJ mol-1  H2)。一般认为氢化反应焓变ΔH落在-29~ 46 kJ mol H(对应于分解压力0.01~1  MPa)范围内的储氢材料是比较适合用作储氢材料的,其对应的/值为0.1~0.16。

因此,储氢材料的氢化物生成焓与氢燃烧热的比值,即HD/HC值,近期内应≤0.16,远期应≤0.12。

4.7 吸氢压力

储氢系统的安全性主要与材料的吸氢压力有关,若材料吸氢压力高,组装成储氢容器时,势必需要容器具有较高的耐压性能,这不仅隐藏安全隐患,还会增加容器加工、制造成本。

储氢材料的吸氢压力应该与固态储氢系统的充氢压力保持一致(表4),所以,储氢材料的吸氢压力,近期内应≤5 MPa,远期应≤3 MPa。

4.8 材料成本

对于电网氢能储能发电系统,成本直接影响了能否商业化。固态储氢系统的一大部分成本来自于储氢材料的成本,目前储氢材料的成本约占固态储氢装置总成本的60%~80%。前面提出了电网氢储能场景下的固态储氢系统的造价目标为:近期内应≤12  000元/kg H2;远期应≤8000元/kg H2。因此,电网氢储能用储氢材料成品的成本,近期内应≤10 000元/kg H2。远期应≤6000元/kg  H2。

综上分析,电网氢储能场景下的储氢材料的技术指标总结如表5所示。

5 结论

本文首先分析了电网氢储能系统中电解水制氢和燃料电池两个关键环节的技术参数,从而得出了电网氢储能系统对氢气存储和释放的特性要求,即:工作温度在-40~85°C之间;吸氢压力最好能够处于0.1~3  MPa之间,放氢压力必须自始至终维持高于0.3 MPa;吸氢速率应大于0.2 Nm3 h-1 (kW)-1,放氢速率应大于0.84 Nm3 h-1  (kW)-1;循环寿命要到达3000次以上。

然后,本文根据电网氢储能系统对氢气存储释放的特性要求以及固态储氢技术的发展现状,分析并提出了电网氢储能场景下的固态储氢系统及储氢材料的关键技术指标以及未来的发展目标。电网氢储能场景下的固态储氢系统及储氢材料的技术指标的提出对于未来指导电网氢储能用固态储氢技术及储氢材料的研究和开发具有重要意义。随着技术的发展和进步,电网氢储能场景下的固态储氢系统和储氢材料的技术指标将进行滚动修订。

参考文献

[1] 霍现旭,王靖,蒋菱,等.氢储能系统关键技术及应用综述[J].储能科学与技术,2016,5(2):197-203. HuoXianxu,Wang  Jing,Jiang Ling,et al.Review on key technologies and applications of hydrogen  energy storage system[J].Energy Storage Science and  Technology,2016,5(2):197-203(in Chinese).

[2] 荆平,徐桂芝,赵波,等.面向全球能源互联网的大容量储能技术[J].智能电网,2015,3(6):486-492. JingPing,Xu  Guizhi,Zhao Bo,et al.Large-scale energy storage technology for global energy  internet[J].Smart Grid,2015,3(6):486-492(in Chinese).

[3] 徐丽,马光,盛鹏,等.储氢技术综述及在氢储能中的应用展望[J].智能电网,2016,4(2):166-171. XuLi,Ma  Guang,Sheng Peng,et al.Overview of hydrogen storage technologies and their  application prospects in hydrogen-based energy storage[J].Smart  Grid,2016,4(2):166-171(in Chinese).

[4] 彭宏,赵文广,靳华伟,等.太阳能光伏发电系统的氢储能发电优化设计[J].中国电业(技术版),2012(4):54-58. Peng  Hong,Zhao Wenguang,Jin Huawei,et al.The optimal design for hydrogen storage  power genreation in solar photovoltaic power generation system[J].China Electric  Power(Technology Edition),2012(4):54-58(in Chinese).

[5] 蔡国伟,孔令国,彭龙,等.基于氢储能的主动型光伏发电系统建模与控制[J].太阳能学报,2016,37(10):2451-2459. Cai  Guowei,Kong Lingguo,Peng Long,et al.Modeling and control of active PV generation  system based on hydrogne storage[J].Acta Energiae Solaris  Sinica,2016,37(10):2451-2459(in Chinese).

[6] 黄大为,齐德卿,蔡国伟.基于制氢系统的平抑风电输出功率方法研究[J].太阳能学报,2016,37(12):3155-3162. Huang  Dawei,Qi Deqing,Cai Guowei.Study on the method of stabilizing wind power output  power based on hydrogen generation system[J].Acta Energiae Solaris  Sinica,2016,37(12):3155-3162(in Chinese).

[7] Stygar M,Brylewski T.Towards a hydrogen economy in  Poland[J].International Journal of Hydrogen Energy,2013,38(1):1-9.

[8] Iordache I,Gheorghe A V,Iordache M.Towards a hydrogen economy in  Romania: statistics, technical and scientific general aspects[J].International  Journal of Hydrogen Energy,2013,38(28):12231-12240.

[9] Astiaso Garcia D.Analysis of non-economic barriers for the deployment  of hydrogen technologies and infrastructures in European  ries[J].International Journal of Hydrogen Energy,2017,42(10):6435-6447.

[10] Cany C,Mansilla C,Da Costa P,et al.Adapting the French nuclear fleet  to integrate variable renewable energies via the production of hydrogen: towards  massive production of low carbon hydrogen?[J].International Journal of Hydrogen  Energy,2017,42(19):13339-13356.

[11] Guandalini G,Robinius M,Grube T,et al.Long-term power-to-gas potential  from wind and solar power: a ry analysis for Italy[J].International Journal  of Hydrogen Energy,2017,42(19):13389-13406.

[12] Valverde-Isorna L,Ali D,Hogg D,et al.Modelling the performance of  wind-hydrogen energy systems: case study the Hydrogen Office in  Scotland/UK[J].Renewable and Sustainable Energy Reviews,2016(53):1313-1332.

[13] Alanne K,Cao S.Zero-energy hydrogen economy(ZEH2E) for buildings and  communities including personal mobility[J].Renewable and Sustainable Energy  Reviews,2017(71):697-711.

[14] Do Sacramento E M,Carvalho P C M,De Lima L C,et al.Feasibility study  for the transition towards a hydrogen economy: a case study in Brazil[J].Energy  Policy,2013,62:3-9.

[15] Hajimiragha A,Fowler M W,Canizares C A.Hydrogen economy transition in  Ontario-Canada considering the electricity grid constraints[J].International  Journal of Hydrogen Energy,2009,34(13):5275-5293.

[16] Schoenung S M,Keller J O.Commercial potential for renewable hydrogen  in California[J].International Journal of Hydrogen  Energy,2017,42(19):13321-13328.

[17] Behling N,Williams M C,Managi S.Fuel cells and the hydrogen  revolution: analysis of a strategic plan in Japan[J].Economic Analysis and  Policy,2015,48:204-221.

[18] Pudukudy M,Yaakob Z,Mohammad M,et al.Renewable hydrogen economy in  Asia-Opportunities and challenges: an overview[J].Renewable & Sustainable  Energy Reviews,2014(30):743-757.

[19] Marchenko O V,Solomin S V.Modeling of hydrogen and electrical energy  storages in wind/PV energy system on the Lake Baikal coast[J].International  Journal of Hydrogen Energy,2017,42(15):9361-9370.

[20] Alazemi J,Andrews J.Automotive hydrogen fuelling stations: an  international review[J].Renewable and Sustainable Energy  Reviews,2015(48):483-499.

[21] Abdin Z,Webb C J,Gray E M.Solar hydrogen hybrid energy systems for  off-grid electricity supply: a critical review[J].Renewable and Sustainable  Energy Reviews,2015(52):1791-1808.

[22] Al-Sharafi A,Sahin A Z,Ayar T,et al.Techno-economic analysis and  optimization of solar and wind energy systems for power generation and hydrogen  production in Saudi Arabia[J].Renewable and Sustainable Energy  Reviews,2017(69):33-49.

[23] 尹晨晖,杨德昌,耿光飞,等.德国能源互联网项目总结及其对我国的启示[J].电网技术,2015,39(11):3040-3049. Yin  Chenhui,Yang Dechang,Geng Guangfei,et al.Summary of energy internet projects in  germany and its enlightenment to China[J].Power System  Technology,2015,39(11):3040-3049(in Chinese).

[24] 蔡国伟,陈冲,孔令国,等.风电/光伏/制氢/超级电容器并网系统建模与控制[J].电网技术,2016,40(10):2982-2990.  Cai Guowei,Chen Chong,Kong Lingguo,et al.Modeling and control of grid-connected  system of wind/PV/electrolyzer and SC[J].Power System  Technology,2016,40(10):2982-2990(in Chinese).

[25] Ren J Z,Gao S Z,Tan S Y,et al.Role prioritization of hydrogen  production technologies for promoting hydrogen economy in the current state of  China[J].Renewable & Sustainable Energy Reviews,2015(41):1217-1229.

[26] 颜卓勇,孔祥威.非并网风电电解水制氢系统及应用研究[J].中国工程科学,2015,17(3):30-34. YanZhuoyong,Kong  Xiangwei.Research on non-grid-connected wind power water-electrolytic hydrogen  production system and its applications[J].Engineering  Sciences,2015,17(3):30-34(in Chinese).

[27] 刘金亚,张华,雷明镜,等.太阳能光伏电解水制氢的实验研究[J].可再生能源,2014,32(11):1603-1608.Liu  Jinya,Zhang Hua,Lei Mingjing,et al.Experimental study on PV electrolysis of  water for production of hydrogen[J].Renewable Energy  Resources,2014,32(11):1603-1608(in Chinese).

[28] 胡娟,杨水丽,侯朝勇,等.规模化储能技术典型示范应用的现状分析与启示[J].电网技术,2015,39(4):879-885. Hu  Juan,Yang Shuili,Hou Chaoyong,et al.Present condition analysis on typical  demonstration application of large-scale energy storage technology and its  enlightenment[J].Power System Technology,2015,39(4):879-885(in Chinese).

[29] /.

[30] /sites/prod/files/2015/05/f22/fcto_targets_onboard_  hydro_storage_explanation.pdf.

[49] 刘明义,郑建涛,徐海卫,等.电解水制氢技术在可再生能源发电领域的应用[C]//  2013年中国电机工程学会年会.中国,成都:中国电机工程学会,2013:2598-2603.

[50] 胡子龙. 贮氢材料[M].北京:化学工业出版社,2002.

原标题:电网氢储能场景下的固态储氢系统及储氢材料的技术指标研究
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

氢储能查看更多>电网氢储能查看更多>固态储氢技术查看更多>