北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能电池评论正文

崔屹:锂电池纳米技术到底实现了什么?

2016-06-15 16:36来源:纳米人微信关键词:锂离子电池电池材料纳米技术收藏点赞

投稿

我要投稿

Si负极的解决方案

纳米材料一个天然优势就在于,其尺寸较小,可以在颗粒和电极层面上有效抵抗力学上的破坏。高容量电极材料有一个基本参数,叫做临界破碎尺寸。这个参数值取决于材料的反应类型(譬如合金反应,转化反应)、力学性能、结晶度、密度、形貌以及体积膨胀率等一系列参数。而且,电化学反应速率对于颗粒的开裂和破碎影响重大,充放电速率越快,产生的应力就越大。当颗粒尺寸小于这个临界尺寸时,锂化反应引起的应力就能得到有效控制,从而缓解颗粒的的开裂和破碎行为。

研究表明,Si纳米柱的临界尺寸是240-360 nm,Si纳米线的临界尺寸是300-400 nm,这一区间范围主要是受到电化学发宁速率的影响。晶化Si纳米颗粒的临界尺寸大约是150 nm。

图2. Si纳米线负极材料可以适应应力的影响

因此,颗粒的破碎问题可以通过使用低于临界尺寸的各种纳米结构材料来实现,譬如纳米柱、纳米线、纳米颗粒、纳米管、纳米棒、以及纳米复合材料等。至于电极的破碎问题主要是采用一系列胶粘方法将Si纳米颗粒粘结在集流器上实现。

S正极的解决方案

S具有高比容量和低成本的优势,位列最具实用前景的锂电池正极材料之一,当S通过锂化反应完全转化为Li2S时,其理论体积膨胀率高达80%。因此,S正极和其他高容量电极材料一样,也存在粉化的问题。除此之外,S的锂化过程中一般会产生多种可溶的聚合硫化物中间体,而S正极的膨胀将导致中间体从电极中泄露出来,降低电池的性能。

原标题:崔屹:锂电池纳米技术到底实现了什么?
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

锂离子电池查看更多>电池材料查看更多>纳米技术查看更多>