北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能电池固态电池评论正文

深度报告|不燃烧、高容量 固态电池距离我们还有多远

2018-09-20 10:35来源:华创电新研究关键词:固态电池储能技术电解质收藏点赞

投稿

我要投稿

非薄膜型产品已尝试打开消费电子市场。台湾辉能科技公司量产的非薄膜型固态电池是在消费电子市场“吃螃蟹”的先行者。公司产品采用软性电路板为基材,厚度可以达到2mm,且电池可以随意折叠弯曲。2014年公司与手机厂商HTC合作生产了一款能给手机充电的手机保护皮套,采用了五片氧化物固态电池共提供了1150mAh容量的电源,通过接口直接为手机充电。同时,产品在可穿戴设备等领域也有应用。

(3)硫化物体系:开发潜力最大,难度也最大

硫化物电解质是电导率最高的一类固体电解质, 室温下材料电导率可达 10-4~10-3 S/cm, 且电化学窗口达5V以上, 在锂离子电池中应用前景较好, 是学术界及产业界关注的重点。因为其拥有能与液态电解质相媲美的离子电导率,是在电动汽车方向最有希望率先实现渗透的种子选手,同时也最有可能率先实现快充快放。

受日韩企业热捧。硫化物固态电池的开发主要以丰田、三星、本田以及宁德时代为代表,其中以丰田技术最为领先,其发布了安时级的Demo电池以及电化学性能,同时,还以室温电导率较高的LGPS作为电解质,制备出较大的电池组。

对环境敏感,存在安全问题。硫化物固态电解质拥有最大的潜力,但开发进度也处于最早期。其生产环境限制与安全问题是最大的阻碍。硫化物基固态电解质对空气敏感,容易氧化,遇水易产生 H2S 等有害气体,这意味着生产环境的控制将十分苛刻,需要隔绝水分与氧气,而有毒气体的产生也与固态电池的初衷相悖。对此企业的解决方案主要为:(1)开发不容易产生硫化氢气体的材料,(2)在全固态电池中添加吸附硫化氢气体的材料,(3)为电池设计抗冲撞构造。但这些做法会导致电池体积增大以及加大成本。除此以外,硫化物固态电池在充放电过程中由于体积变化,电极与电解质界面接触恶化,导致较大的界面电阻,较大的体积变化会恶化其与电解质之间的界面。因此,硫化物体系是当前开发难度最大的固态电解质。

生产工艺上,涂布+多次热压、添加缓冲层改善界面性能。硫化物固态电池多已实现涂布法进行样品生产,同时,生产环境需要严格控制水分。为了解决界面问题,企业往往采取热压的方式增强电解质与电极材料的接触。此外,通过在电极与电解质之间渡上一层缓冲层,改善界面性能。宁德时代在硫化物体系也进行了前瞻布局,并初步设计了其工艺路线,其工艺路线为:正极材料与硫化物电解质材料的均匀混合与涂覆,经过一轮预热压,形成连续的离子导电通道。经过二次涂覆硫化物之后,再进行热压,固态化之后可以去掉孔隙,再涂覆缓冲层后与金属锂复合叠加。

综合看来,聚合物体系工艺最成熟,率先诞生EV级别产品,其概念性与前瞻性引发后来者加速投资研发,但性能上限制约发展,与无机固态电解质复合将是未来可能的解决路径;氧化物体系中,薄膜类型开发重点在于容量的扩充与规模化生产,而非薄膜类型的综合性能较好,是当前研发的重点方向;硫化物体系是最具希望应用于电动车领域的固态电池体系,但处于发展空间巨大与技术水平不成熟的两极化局面,解决安全问题与界面问题是未来的重点。

(三)产业化尚处早期,前景已有保障

市场化产品能量密度较低。现阶段固态电池量产产品很少,产业化进程仍处于早期。唯一实现动力电池领域量产的博洛雷公司产品能量密度仅为100Wh/kg,对比传统锂电尚未具备竞争优势。

高性能的实验室产品将为产业化奠基。从海外各家企业实验与中试产品来看,固态电池能量密度优势已开始凸显,明显超过现有锂电水平。在我国,固态锂电的基础研究起步较早,在“六五”和“七五”期间,中科院就将固态锂电和快离子导体列为重点课题,此外,北京大学、中国电子科技集团天津18所等院所也立项进行了固态锂电电解质的研究,并在此领域取得了不错的进展。未来,随着产业投入逐渐加大,产品性能提升的步伐也必将加速。

(四)固态电池对锂电产业链的影响

除了电解质,固态电池在其他电池部件上的选择与传统锂电也有一定差异。

电极材料采用与固态电解质混合的复合电极。结构上,固态电池正负极与传统电极的最大区别在于:为了增加极片与电解质的接触面积,固态电池的正负极一般会与固态电解质混合。例如在正负极颗粒间热压或填充固态电解质,或者在电极侧引入液体,形成固-液复合体系,这都与传统锂电单独混合极片浆料并在铝/铜箔上涂布不同。而在材料选择上,由于固态电解质普遍更高的电化学窗口,高镍高压正极材料更容易搭载,未来也将持续沿用新的正极材料体系,负极材料上,多采用硅、金属锂等高容量负极,充分发挥固态电池的优势。

电极与电解质之间存在缓冲层。缓冲层的加入能起到改善电极与电解质界面性能的作用。其成分可以为凝胶化合物、Al2O3等。

隔膜仍然存在,电池实现全固态后消失。现阶段的大部分固态电池企业的产品仍需添加少量液态电解液以缓解电极界面问题、增加电导率,因此隔膜仍然存在与电池中以用来阻隔正负极,避免电池短路。这种折中的解决方法同时拥有固态电池的性能优势,在技术难度上也更加易于实现。而随着技术推进,未来电解液用量会越来越少,当过渡到完全不含液体或液体含量足够小时,电池将取消隔膜设计,体系已能满足安全需求。

多采用软包的封装技术。除去液态电解液后,固态电池的封装与PACK上比传统锂电更灵活、更轻便,因此将采用软包封装。

原标题:固态电池深度报告:固态电池—后锂电时代必经之路
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

固态电池查看更多>储能技术查看更多>电解质查看更多>