北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能材料电池隔膜技术正文

锂离子电池隔膜材料研究进展

2018-07-25 10:08来源:化工学报作者:王振华、彭代冲、孙克宁关键词:电池隔膜湿法隔膜聚烯烃隔膜收藏点赞

投稿

我要投稿

1.3 间位芳纶

PMIA 是一种芳香族聚酰胺,在其骨架上有元苯酰胺型支链,具有高达  400℃的热阻,由于其阻燃性能高,应用此材料的隔膜能提高电池的安全性能。此外,由于羰基基团的极性相对较高,使得隔膜在电解液中具有较高的润湿性,从而提高了隔膜的电化学性质。一般而言,PMIA  隔膜是通过非纺织的方法制造,如静电纺丝法,但是由于非纺织隔膜自身存在的问题,如孔径较大会导致自放电,从而影响电池的安全性能和电化学表现,在一定程度上限制了非纺织隔膜的应用,而相转化法由于其通用性和可控制性,使其具备商业化的前景。


图 4 PMIA隔膜截面SEM图和孔径分布图

浙江大学朱宝库团队(2016)通过相转化法制造了海绵状的PMIA隔膜,如图  4,孔径分布集中,90%的孔径在微米以下,且拉伸强度较高达到了10.3Mpa。相转化法制造的PMIA隔膜具有优良的热稳定性,在温度上升至  400℃时仍没有明显质量损失,隔膜在 160℃下处理  1h没有收缩。同样由于强极性官能团使得PMIA隔膜接触角较小,仅有11.3°,且海绵状结构使得其吸液迅速,提高了隔膜的润湿性能,使得电池的活化时间减少,长循环的稳定性提高。另外由于海绵状结构的PMIA隔膜内部互相连通的多孔结构,使锂离子在其中传输通畅,因此相转化法制造的隔膜离子电导率高达1.51mS  ˙cm -1 。

1.4 聚对苯撑苯并二唑

新型高分子材料PBO(聚对苯撑苯并二唑)是一种具有优异力学性能、热稳定性、阻燃性的有机纤维。其基体是一种线性链状结构聚合物,在  650℃以下不分解,具有超高强度和模量,是理想的耐热和耐冲击纤维材料。


图 5 (a)PBO原纤维;(b)PBO纳米纤维隔膜结构

由于PBO纤维表面极为光滑,物理化学惰性极强,因此纤维形貌较难改变。PBO纤维只溶于  100%的浓硫酸、甲基磺酸、氟磺酸等,经过强酸刻蚀后的PBO纤维上的原纤会从主干上剥离脱落的,形成分丝形貌,提高了比表面积和界面粘结强度。本课题组的郝晓明等(2016)用甲基磺酸和三氟乙酸的混合酸溶解PBO原纤维形成纳米纤维后,通过相转化法制备了PBO纳米多孔隔膜,其纤维形貌如图5,该隔膜的极限强度可达525Mpa,杨氏模量有20GPa,热稳定性可达  600℃,隔膜接触角为 20°,小于Celgard2400 隔膜的 45°接触角,离子电导率为 2.3×10 -4 S cm -1 ,在  0.1C循环条件下表现好于商业化Celgard2400  隔膜。由于PBO原纤维的制造工艺较难,全球范围生产优良PBO纤维的企业屈指可数,且均是采用单体聚合的方式,生产出的PBO纤维因需要强酸处理较难应用在锂电池隔膜领域,汉阳大学Young  MooLee团队(2016)  则用HPI(羟基聚酰亚胺)纳米颗粒通过热重排的方式制备TR-PBO纳米纤维复合隔膜,该隔膜除了具备PBO材料本身的高强度、高耐热性的优点外,孔径分布更集中,孔径更小,且不需要在强酸强碱条件下制备。

2、复合隔膜

非织造隔膜的缺点在于在生产过程中较难控制孔径大小与均一性,另外,非织造隔膜的机械强度较低,很难满足动力电池的需求。近年来,复合隔膜已成为动力锂离子电池隔膜的发展方向,该类隔膜是以干法、湿法以及非织造布为基材,在基材上涂覆无机陶瓷颗粒层或复合聚合物层的复合型多层隔膜。

2.1 无机涂层

在隔膜表面涂覆无机陶瓷材料能有效改善隔膜性能,首先无机材料特别是陶瓷材料热阻大,可以防止高温时热失控的扩大,提高电池的热稳定性;其次陶瓷颗粒表面的-OH等基团亲液性较强,从而提高隔膜对于电解液的浸润性,研究者将许多类型的无机纳米颗粒,如Al  2 O 3 ,SiO 2 ,TiO 2 和BaTiO 3 直接涂覆在基膜上。

图 6(a)AlOOH涂覆隔膜在 150℃处理 0.5h后截面SEM图;

(b)在 130~170℃下PE隔膜和涂覆隔膜热收缩图

华东理工大学的杨云霞团队(2017)通过在PE膜上涂覆一水软铝石使涂层更薄,且显著提高了PE膜的热稳定性,在  140℃下几乎无热收缩,在180℃下处理0.5h的热收缩也小于3%,图6中所示,他们发现在高温环境下熔化的一部分PE由于毛细管作用会进入表面AlOOH层,并与AlOOH颗粒良好接触形成互相连接的表面结构,从而提高了隔膜的热稳定性。并使基膜与涂覆层接触更紧密,提高了隔膜的机械性能。通过简单的涂覆复合会发生一系列问题,如将陶瓷颗粒涂覆在隔膜表面时会发生颗粒团聚分散不均,涂覆后陶瓷颗粒脱落以及陶瓷复合隔膜易受潮等问题,在涂层浆料中加入特殊性质的添能缓解这些问题。韩国国立大学的Myung-Hyun  Ryou课题组(2016)在涂层浆料中加入DLSS表面活性剂改进Al 2 O 3 无机涂层工艺,图 7  所示在没有加入表面活性剂的涂层表面显示出纵向的裂纹,而DLSS的加入能降低液滴表面张力使得Al 2 O 3  颗粒均匀分散在PE膜表面,使用这种表面活性剂制造的隔膜具有均一的表面性质,对电解液润湿性更好,从而使倍率性能、循环性能提高。


图 7 加入DLSS活性剂前(a)后(b)复合隔膜表面结构示意图

韩国汉阳大学的Kuk Young  Cho等(2016)受植物表面疏水特性产生启发使用乳液聚合法合成了水乳液型聚合物粘合剂,利用这种乳化石蜡(CCS)和Al 2 O 3  纳米陶瓷颗粒配成水性涂层浆料涂覆在PE隔膜上,如图 8 所示,能有效阻止隔膜吸水,采用此隔膜能有效提高电池在高湿度环境中的循环性能。


图 8 加入乳化石蜡后涂层表面示意图

韩国汉阳大学的 Kim课题组(2017) [31] 提出将SiO 2 颗粒氨基化后涂覆在PE隔膜表面,如图 10中所示,氨基与电解质高温分解产生的PF  5 发生复合反应,从而避免电解液中HF的产生,因此抑制了高温环境下正极活性材料内过渡金属的溶解,且由于SiO 2  陶瓷颗粒的热阻大,进一步提高了复合隔膜在高温下的稳定性和机械性能。


图 9 氨基化后SiO 2 颗粒表面结构示意图

Choi等研究过SiO 2 颗粒的尺寸对于无机复合隔膜电化学性质的影响,结果表明相比于 530nm的SiO 2 颗粒,采用 40nm的SiO 2  颗粒的复合隔膜具有更高的孔隙率和更短的离子传输通道,使得其具有更高的电解液吸液率和离子电导率。


图 10 涂覆分子筛后复合隔膜表面结构示意图 [33]

原标题:锂离子电池隔膜材料研究进展
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

电池隔膜查看更多>湿法隔膜查看更多>聚烯烃隔膜查看更多>