北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能电池评论正文

后锂电池时代:揭秘哪种电池技术会脱颖而出

2018-02-09 08:58来源:锂电联盟会长作者:锂先生关键词:锂离子电池电解液纯电动汽车收藏点赞

投稿

我要投稿

此前的研发主角一直是用于便携终端的充电电池。但是,由于每台产品所需要的电池容量和性能大大超出便携用途,所以用于汽车及定置用途的大型电池逐渐成为研究的主要对象。

汽车和定置用途等使用的大型电池除了便携终端用电池所要求的高容量化之外,对长寿命化和高安全性也有很高的要求(图1)。比如寿命,便携终端用锂离子充电电池只要能在产品约为2年的换购周期内维持性能即可。而大型电池则必须保证10年或20年的更长期间。

图1:面向汽车用途和定置市场发生变化的电池开发

汽车用途和定置市场今后将迅速扩大,因此电池开发也开始发生巨变。不仅是高容量化,从安全性和寿命的角度出发,全固体电池开始受到关注。此外,由于资源问题,钠离子电池的开发加速。

据调查公司富士经济的调查结果,虽然纯电动汽车(EV)目前的市场规模为每年几万辆,但“2020年以后会逐渐扩大,到2030年全球的EV将达到1374万辆”。预计定置用途的用量也将随着可再生能源的普及而成倍增长。

充电电池市场激增的负面影响是可能出现资源短缺问题。尤其是稀有金属锂(Li),业内一致认为“总有一天锂也会出现供应短缺的问题”(某电池相关人士)。

另外,越来越多的研究人员开始开发不使用钴(Co)和镍(Ni)等高价材料的充电电池,这些材料目前多被用于作为锂离子充电电池的正极材料。

关于在电池的性能中最为重要的大容量化指标,被称为“后锂离子充电电池”的全固体电池和锂空气电池纷纷发表了取得的成果,这些发表十分受欢迎,甚至出现了站着听讲的听众。从发表内容中可以了解到,为了在2020~2030年前后实用化,并实现500Wh/kg以上的能量密度,电池开发人员正在推进基础研发(图2)。

图2:计划2020年实现300Wh/kg的能量密度

目前推进的材料开发的目标是,2020年在确保安全性的同时使能量密度达到300Wh/kg。2030年使Li-S电池和锂空气电池等500Wh/kg以上的新一代电池实现实用化。

不过,要想一下子实现具备500Wh/kg能量密度的新一代电池并非易事。因此,首先打算在2015~2020年前后实现目前约2倍能量密度、即200~300Wh/kg的改良型锂离子充电电池也在推进开发。

改良型锂离子充电电池打算将正负极换成更高容量的材料来实现。正极材料方面,采用有机化合物的有机充电电池领域的发表每次都会增加。这种电池可以利用低价有机化合物,但此前循环特性存在课题,不过在本届电池研讨会上有报告宣布,充放电3万次以上仍可以作为充电电池使用。

负极材料有硅(Si)和锡(Sn)等比容量为目前2倍以上即1000mAh/g的候补材料。长寿命化方面的难度最高。

从正极到固体电解质

钠离子充电电池的发表数量激增至3倍是有原因的。那就是,最近数年钠离子充电电池的特性得到大幅提高(图3)。此前采用钠离子的充电电池只有日本碍子(NGK)已经商用化的钠硫(NAS)电池以及瑞士MES-DEA公司的钠镍氯化物充电电池。不过,这些电池组合使用了熔解钠和陶瓷固体电解质,因此需要300℃的工作温度。

图3:钠离子充电电池的研究开发日益活跃

钠离子充电电池可在常温下稳定工作,因此探索高容量材料的研究开发日益活跃。

可用于钠离子充电电池的正极材料、负极材料及电解液的候补材料等从2005年前后开始陆续发现,现在已经具备可在常温下实现毫不逊色于锂离子充电电池容量的实力。

2005年,九州大学的研发小组宣布,通过在正极材料中采用α-NaFeO2,能实现可逆性钠离子的脱/嵌,钠的平均电压高达3.3V,由此开始受到关注。

可利用硬碳

更具有冲击力的是,负极材料通过采用硬碳也能实现钠离子的嵌入。此前一直作为锂离子充电电池主流负极材料的石墨无法进行钠离子嵌入。

另外,2009年春,东京理科大学驹场研究室发现了可用于硬碳负极而且充放电循环特性出色的电解液和添加剂,研究取得了大幅进展。

具体而言,研究了碳酸乙烯酯(EC)、碳酸亚丙酯(PC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)及碳酸二乙酯(DEC)等锂离子充电电池常用的碳酸酯类溶剂。发现在PC和EC:DEC的混合溶液中,能以200mAh/g以上的高容量实现100次以上的循环寿命(图4)。

图4:通过改变电解液提高充放电循环特性

东京理科大学通过将PC和EC:DEC用于电解液,实现了充放电循环特性出色的钠离子充电电池,并于2009年春进行了相关发表(a)。如果是锂离子充电电池利用的EC:DMC的话,电解液立即就会劣化(b)。

众所周知,锂离子充电电池为了在石墨和电解液间获得良好的界面,会在电解液中添加碳酸亚乙烯酯(VC),以便在石墨上形成钝化膜。但将VC用于钠离子充电电池的话,电解液会立即劣化。东京理科大学宣布,通过添加氟代碳酸乙烯酯(FEC),可大幅抑制电解液的分解,有望改善电池寿命。

钠离子比锂离子的离子半径大,过去认为在结晶构造之间难以移动,高速率的充放电特性低,其实并非如此。“离子半径大则表面电荷密度低,离子自身的传导率高”(东京理科大学理学部应用化学科副教授驹场慎一)。

驹场研究室利用正极采用NaNi1/2Mn1/2O2、负极采用硬碳的纽扣型电池实施了试验,经确认,即使进行高速充放电,与低速充放电相比容量的降低程度也比较小(图5)。驹场表示,这是“因为电解液中的输送能力比锂离子还要优异”。

图5:高速充放电特性出色的钠离子充电电池利用东京理科大学试制的纽扣型电池进行充放电的结果显示,钠离子充电电池在高速充放电中也具备优异的特性。

利用铁的氧化还原反应

由于负极可利用硬碳,与锂离子充电电池研究一样,探索可实现高容量化正极材料的开发也日益活跃。最近备受关注的是,可实现高容量化、且不同于锂离子充电电池的正极材料。其中之一就是可利用铁的3价和4价氧化还元反应。锂离子充电电池不会发生铁氧化还原反应,只能利用镍、锰和钴等过渡元素的氧化还原反应。

实际上,东京理科大学发布的铁类层状正极材料Na2/3(Fe1/2Mn1/2)O2的比容量为190mAh/g注1)。特点是,显示出了钠和氧形成三棱柱网格的P2型层状构造。

注1) 东京理科大学以“层状含钠铁锰类氧化物的结晶构造和电气化学特性”为题发表了演讲[演讲序号:1E29]。

仅以铁构成的NaFeO2一般采用钠和氧形成八面体网格的O3型积层构造,以3.5V以上电压充电时,随着铁离子的移动会发生不可逆相变。而P2型Na2/3(Fe1/2Mn1/2)O2即使充电电压超过3.5V,也可以根据铁的氧化还原反应获得可逆容量,充电电压提高至4.5V时仍能维持层状构造。

东京理科大学的研发小组认为,虽然Na2/3(Fe1/2Mn1/2)O2的平均电压只有2.75V,但比容量高,因此能确保能量密度超过正极材料采用LiFePO4的锂离子充电电池(图6)。另外,目前通过使铁和锰的比例各占一半来维持P2型,“如果减少锰的用量后仍能维持P2型的话,还能进一步提高容量”(东京理科大学综合研究机构讲师薮内直明)。

图6:利用新的正极材料实现190mAh/g的比容量

东京理科大学在本届电池研讨会上就拥有高比容量的正极材料Na2/3(Fe1/2Mn1/2)O2发表了演讲。钠和氧以三棱柱构造(P2型)排列(a)。通过锰和铁的氧化还原反应实现了190mAh/g的高容量(b)。虽然新材料的平均电位稍低,只有2.75V,但作为电池可实现高能量密度(c)。

意在高压化的丰田

钠离子充电电池在制成单元时与锂离子充电电池相比存在电压低的课题。因此,业界还出现了提高电压的动向。丰田在本届电池研讨会上就电位为4V以上的含钠过渡金属磷酸盐发表了演讲(图7)注2)。该公司就Na4M3(PO4)2P2O7,以镍、钴、锰比较了M过渡金属部分。结果显示,采用钴的Na4Co3(PO4)2P2O7的容量最高,为95mAh/g。而且,不但确保了4V以上的放电,充放电100次后也没有出现容量劣化。

图7:具备4V以上电位的Na4Co3(PO4)2P2O7

丰田在电池研讨会上就具备4V以上电位的Na4Co3(PO4)2P2O7发表了演讲(a,b)。

注2) 丰田以“钠电池用新正极活性物质Na4M3(PO4)2P2O7〔M=Ni,Co,Mn〕的电气化学特性”为题发表了演讲[演讲序号:2E07]。

不仅是正极材料的开发,钠离子充电电池的研究范围在不断扩大。在本届电池研讨会上,因采用锂离子的全固体电池研究而闻名的大阪府立大学发布了钠离子全固体电池的研究成果注3)。固体电解质采用钠离子导电率为10-4S/cm的Na3PS4。在该固体电解质的基础之上采用钛硫(TiS)正极和钠锡(Na-Sn)合金负极的全固体电池在室温下使用时,虽然首次的不可逆容量较高,但第二次以后就可以稳定地反复充电了(图8)。

图8:钠离子全固体电池亮相

大阪府立大学在电池研讨会上就固体电解质采用Na3PS4的全固体电池发表了演讲(a,b)。与初始放电容量相比,第二次以后的放电容量大幅降低,不过第二次以后表现出了稳定的循环特性(c)。

注3) 大阪府立大学以“采用Na3PS4固体电解质的全固体钠硫电池试制”为题发表了演讲[演讲序号:2E21]。

另外,还试制了正极采用高容量硫(S)的电池。S和放电生成物Na2S是绝缘体,因此将S或Na2S与导电材料乙炔黑和固体电解质以1:1:2的重量比进行了混合。由此确认,1000mAh/g以上的高容量全固体钠硫电池可以在室温下正常工作。

原标题:后锂电池时代:哪种电池技术会脱颖而出
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

锂离子电池查看更多>电解液查看更多>纯电动汽车查看更多>