北极星电力网首页个人登录注册企业登录注册
广告投放 |
您的位置:首页  > 燃料电池 > 正文

南京理工在基于氟化的COFs质子交换隔膜研究取得新进展

北极星氢能网 来源:南京理工大学    2020/8/3 9:03:29 我要投稿

北极星氢能网讯:近日,南京理工大学化工学院张根教授团队在质子交换隔膜材料方面取得最新研究进展。相关研究成果以“Perfluoroalkyl-functionalized Covalent Organic Frameworks with Superhyhobicity for Anhydrous Proton Conduction”为题,发表在国际化学顶级期刊《美国化学会志》(J. Am. Chem. Soc.)上。南京理工大学为该项工作第一完成单位和通讯单位,青年教师吴晓伟为论文第一作者,张根教授为论文通讯作者,京都大学Satoshi Horike为论文共同通讯作者。

01.jpg

当前,化石燃料所带来的环境污染和能源危机日益严峻,加速新能源的开发与利用迫在眉睫。燃料电池(fuel cell)作为一种将“化学能转换为电能”的能量转换装置,由于其能量转换效率高、能量密度高、无噪音无污染,成为改变人类生活的十大新技术之一。性能优异的质子交换膜是燃料电池研发中核心技术。过去数十年来,质子传导材料的发展产生了各种全氟化聚电解质,例如Nafion。但是,由于这类材料适用温度范围窄、成本高、耐用性不足,限制了在耐高温和高能量密度燃料电池中的应用。

图1.COF合成示意图

02.jpg

共价有机骨架(COF)是一类新型的晶态有机多孔聚合物,是有机结构单元通过共价键连接而成的有序的框架结构。它们的显著特征之一是结构与性能的可调控性。二维COF形成的均匀1D通道与Nafion结构中通道相似,这使它们成为质子传输的潜在材料。但是,传统COF材料的化学稳定性较差,限制了其在酸性质子交换隔膜中的应用。

图2.氟化COF固体核磁谱图和质子传导性能测试

03.png

图3.质子在氟化COF一维通道中的传导机理示意图

04.png

鉴于此,张根教授团队开发了一种自下而上的自组装策略,构建了全氟烷基官能化的二维COF,并系统地研究了不同长度的氟链对COF晶态和质子传导性能的影响。与无氟的COF相比,由于增强的疏水性,氟化COF对强酸具有超强结构稳定性,在浓磷酸(85%),浓硝酸(65%)和浓盐酸(38%)中均可稳定存在。表征结果发现,在磷酸掺杂修饰后,氟化的COF材料在无水条件下的质子传输导电性达到目前有机多孔材料无水质子传输性能最高的例子之一,同时这一离子传输性能是无氟COF的一万倍。通过固体NMR表征结果显示,磷酸在COF通道中通过氢键相互连接,大多数的磷酸具有较强的可移动性,同时COF框架结构呈刚性,从而具有快速传导质子的性能。本文为通过COF孔结构设计,实现其导向性功能化,提供了COF功能化修饰的成功范例。这一研究为孔表面的预先设计和功能化,实现COF的目标性能铺平了道路,并凸显了COF纳米通道作为快速离子传输平台的巨大潜力。

该工作得到了中组部“海外高层次引进人才”项目、江苏省自然科学基金和软化学与功能材料教育部重点实验室的支持。

原标题:《美国化学会志》刊登我校科研团队在质子交换隔膜材料方面的新进展

    关注氢能网微信公众号
    氢能资讯手机看

点击查看更多精彩资讯
投稿联系:张女士 13383650614 QQ: 3066503592
邮箱:zhanghaiyue#bjxmail.com(请将#换成@)
氢能网声明:此资讯系转载自氢能网合作媒体或互联网其它网站,氢能网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考。

热门交流圈

  • 关注公众号氢能新闻随时看
  • 扫描备注加群+公司+职位

关于我们

氢是一种用途广泛、清洁、安全的能量载体,可以作为动力燃料或工业原料。氢能在能源转型中可以发挥实现大规模、高效的可再生能源消纳;在不同行业和地区间进行能量分配;充当能源缓冲载体以提高能源系统的韧性;降低交通运输、工业用能、建筑采暖过程中的碳排放等作用。目前,世界主要发达经济体,已经把氢能源的利用放到了一个战略的高度来对待。 欢迎和北极星氢能网团队一起,追寻氢能行业发展,关注能源变革未来。

联系我们

投稿/商务合作:
岳女士 18910574558 QQ:1532379576
任女士 18713515424 QQ:2780464805

©1999-2020 北极星氢能网
京ICP证080169号
京公网安备 11010502034458号
京ICP备09003304号-2
电子公告服务专项备案