北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能电池技术正文

产业化锂离子电池80℃高温存储研究

2018-04-08 13:45来源:清新电源关键词:锂离子电池电解液电解质收藏点赞

投稿

我要投稿

 人们研究过锂离子电池在储存过程中的内部结构和性能变化,但限于容量衰减和自放电等,随着锂离子电池向纯电动车、混合电动车和插电式混合电动车等配套电源的方向发展,大型化带来的安全隐患日益增加,对锂离子电池热分析和安全性能的研究越来越多,但高温储存的研究还是关注较少。目前几乎所有的便携式电子设备都使用锂离子电池,例如像移动电话如果没有这种电池技术就无法工作。然而,大多数二次锂离子化学物质的工作温度限制在60℃左右,在较高温度下,会有气体生成并且电池性能会发生衰减,甚至会发生热失控反应。

高温长寿命石墨烯基锂离子电池技术此前曾有一些科技公司宣布已经可以被研发出来即将投入使用,但是后来却杳无音讯。2016年华为中央研究院瓦特实验室在第57届日本电池大会上宣布在锂离子电池领域实现重大研究突破,推出业界首个高温长寿命石墨烯基锂离子电池。实验结果显示,以石墨烯为基础的新型耐高温技术可以将锂离子电池上限使用温度提高10℃,使用寿命是普通锂离子电池的2倍。华为瓦特实验室首席科学家李阳兴博士指出,“高温环境下的充放电测试表明,同等工作参数下,该石墨烯基高温锂离子电池的温升比普通锂离子电池降低5℃; 60°C高温循环2000次,容量保持率仍超过70%;60℃高温存储200天,容量损失小于13%。”

本工作中,研究者们研究了工业制造的不同电解质电池在80°C温度下储存期间和储存后的分解情况,目的是研究循环过程中观察到的电容衰减情况,而不是NMC/石墨基锂离子电池的储存条件。该项工作选用四种不同电解质成分进行试验,如下:


在高温条件循环之前,电池在240mA(C/5)下进行了2.5V和4.2V电压之间的两个循环对比,以证明电容可再生能力和电阻值的测定。之后电池在80℃温度下充电/放电到最初的储存电压,并在30天的时间内持续监测OCV和体积膨胀。

开始在80℃温度下观察循环过程中的电池参数,如图1,填充有标准电解质和1%VC电解质电池的电压分布不同,且具有不同的初始电压;在高初始电压下,电荷转移电阻会增大。观察可知最大的电阻增加发生在4.2V循环的电池中,其中充满了标准电解质,可以归因于阴极电解液氧化过程中产生的大量气体,如图2。随后,研究在80°C温度下循环后电阻增大和容量损失的情况,如图3。结果表明,在较高的循环电压下,SEI电阻逐渐增大,但在3.6V以下的电压下几乎保持一致;电容测试结果表明,最大的容量损失发生在高开路电压条件下,同时也伴随着电荷转移电阻值的增加。之后,在80°C温度下循环30天后,还额外增加了室温下的循环测试并进行分析,如图4。3.6V电压下循环的电池恢复了部分容量,与高温老化前相比,整体损失小于0.5%,在较低电压下循环的电池也可观察到类似的情况与这种行为相反,更高温度下的电池在循环过程中表现出更大的电阻增加(较大的电位)。最后,研究者们对循环后的样品进行了一系列表征和分析。如图6和7测试了在80°C温度下循环后并在室温下进行了额外循环的电池阳极表面和截面的SEM图像,EIS测试分析了电荷转移电阻,XPS测试分析了电极表面的产物。

综上一系列实验结果表明,随着电池电压的增加,电容衰减和电阻增大的幅度逐渐增大,当电池在80°C下循环时,电阻的增大是电池失效的主要原因,并与NMC二次粒子的解体有关,在电压≥3.9V下储存电池时,观察到了电解质分解,这种行为在本研究的循环实验中没有观察到。在相同温度和高压下循环老化时,PES 211基电解质能够抑制阴极相关电阻的增加,而电阻的增加主要与两个电极上气体的产生和生长分解层有关。与其他电解质混合物相比,PES 211基电解质的改进与电极表面的稳定钝化有关,从而抑制了进一步的溶剂氧化和其它反应。另外,在25°C循环高温老化电池时,标准电解质电池的电阻增加,这一结果很可能是因为CO2的消耗从而在阳极SEI处形成进一步的分解产物;与这种行为相反的是,首本研究次发现含有PES 211电解质的电池在进一步循环后,电阻会出现下降,但其原因尚未阐明,需进行进一步的研究分析。

【 图文详情 】


图一 80℃下测试不同电解质电池和不同开路电压电压的电压分布图

电解质不同时电池的电压降表现出不同,但是在80°C温度下循环的前10天,所有电解质的电压降过程相似,OCV的差值小于30 mV。但是在此之后,加有添加剂的电池与加入标准电解液的电池相比具有更明显的电压降,储存在工业电解液中的电池的附加电压降很可能与添加剂混合物中的不同溶剂有关,因为使用的添加剂与工业电解也的配方类似。


图二 不同电解质电池的体积膨胀测试

显然,在80°C温度下循环的前几天,电池体积快速膨胀,经过大约15天后,含有标准电解质的电池开始在阿基米德测试孔内漂浮。在同一时间间隔内,填充标准电解质和1%VC的电池与不添加添加剂的电池相比,体积膨胀约为其五分之一。


图三 不同电解质电池的能奎斯特曲线和电容衰减图

结果表明,在较高的循环电压下,SEI电阻逐渐增大,但在3.6V以下的电压下几乎保持一致;这与理论保持一致,即阴极中的氧化物种可以转移到阳极,在阳极上还原,增加SEI层厚度。电容测试结果表明,最大的容量损失发生在高开路电压条件下,同时也伴随着电荷转移电阻值的增加。总之,加入标准电解质的电池表现出最低的电荷转移电阻,具有清晰的高频半圆,其它配方的添加剂在SEI形成过程中优先减少,从而形成不同化学成分的表面膜。


图四 外加室温循环后的不同电解质电池的电容衰减和电阻变化测试

3.6V电压下循环的电池恢复了部分容量,与高温老化前相比,整体损失小于0.5%,在较低电压下循环的电池也可观察到类似的情况。最初3.2V和2.9V电压的电池容量损失略大,且存储电压降低。猜测这种情况的出现可能与阳极SEI某些组分的分解有关。当循环电池的电压在3.6V以下时,每个循环电阻的增加与没有在高温下循环的电池相似;与这种行为相反,更高温度下的电池在循环过程中表现出更大的电阻增加(较大的电位),这种效应很可能是因为消耗了在高温储存过程中产生的气体,此外,在循环过程中,这些气体在阳极处会减少,会进一步增加分解层的厚度。改变电解质性质,如导电盐的浓度、HF浓度或其他分解产物,很可能导致其它组分的分解,这也与容量在进一步循环期间的衰减有关。例如,改变电解液配方可能导致较低电压的电池发生氧化反应,在另外的常温循环中,可以观察到电解质配方之间电荷转移电阻发生变化的显著差异。在填充标准电解质的电池中,电阻增加的幅度最大,这与在高温循环过程中的电池体积膨胀是一致的,因为大量的二氧化碳也会导致阳极氧化膜的快速生长。


图五 不同电解质电池外加室温循环后的体积变化

如图5显示了标准电池和含有PES 211电解质的电池在另外常温循环中的体积变化,在这两种配方的电池中都可以观察到体积的减少,这与阳极的CO2还原理论是一致的。标准电解液的电池在增加50个循环的过程中表现出体积减少的线性趋势,目前还不清楚气体是随着时间的推移而消耗的,还是由于电化学循环造成的。在80℃高温循环后,含有PES 211电解质的电池与未循环电池相比,体积分布有很小的位移,平台区域也不那么明显。位移可以解释为阳极电阻的增加,会导致电极内均质石墨锂的减少,并且在低SoC下形成Li1C6。此外,体积的整体膨胀和收缩仍保持一致,因为只有少量容量的损失。然而,用标准电解质老化电池的变化更为显著,由于锂离子的消耗量较大,导致容量的损失较大,使得电池的整体周期性体积变化较低;还可以进一步看出,电池在充电结束时已经开始体积减少。


图六 不同电解质电池循环后的截面SEM/EDS测试

电极表面覆盖着一层粗大的晶状层,难以区分石墨颗粒,电极的横截面SEM和EDS图像还表明,颗粒间的大部分孔洞都充满了含氟产物;相比之下,含有PES 211电解液的电池老化后的阳极表面光滑,颗粒边界清晰,横截面SEM以及EDS图像显示具有多孔网络,这是锂离子通过电极具有良好导电性所必需的条件。在低放大率下,两种电极之间没有差别,但在较大的放大倍率下,很明显NMC颗粒表面覆盖着一层薄而不均匀的表面膜,含PES211电解质老化阴极颗粒表面粗糙度却不明显,表面看起来是均匀平滑的,表明电解液分解产物的数量较少。


图七 对称纽扣电池的EIS测试和XPS图

然而,如图7可以看出对称电阻值,可以观察到不同电解质老化的阳极在相同的范围内的电荷转移电阻。在组装对称纽扣电池之前使用DMC洗涤的过程和添加新电解质的过程会导致两个电极内分解产物的部分溶解。选用标准电解质老化的电池的阴极电阻比添加PES211电解质的电池高出五倍,因此得出结论,三元添加剂体系有利于形成更稳定的表面层,因而可以防止进一步氧化反应。XPS分析可以看出,在阴极表面发现少量与硫有关的产物,类似于磷化合物,Madec等人在室温下对电解液组成相同的电池进行了类似的观察,并通过XPS测试确定了Li2SO3和R-SO3等相关产物的存在。在另一项研究中,有课题组同样报道了在75℃循环含硫添加剂PS(丙烷磺酸钠)的电池后,有R-SO3基产物生成,然而,与这里显示的结果相比,它们不能证实任何与S相关化合物的存在。在这两项研究中所使用的添加剂之间的主要区别之一是PES内部的双键,这可能对附加的反应路径起主要作用的一点。第二种解释也可能是与电解质溶剂的氧化电位有关,为了研究这种可能性,在三电极体系中测定了标准电解质和含PES 211电解质电池的氧化稳定性,测试的循环伏安图如图8所示。


图八 不同电解质电池的电流密度响应图

在25°C常温下测试时,两种电解质电池在铂电极上表现出相似的氧化行为,直到电压为5.5 V,含有PES 211电解质的电池表现出大约0.5 V的延迟启动。也因此进一步说明,氧化电流在大约4V时已经开始逐渐增加,这也与阴极表面存在一个薄电解质分解层有关,甚至在阴极表面也是如此。在80℃温度下测试时,可以清楚地看到两种混合物的氧化范围都已转移到较低的电位。

【 原文信息 】

Practical high temperature (80 °C) storage study of industrially manufactured Li-ion batteries with varying electrolytes (Journal of Power Sources, 2018, DOI: https://doi.org/10.1016/j.jpowsour.2018.03.050)

原标题:产业化锂离子电池80℃高温存储研究报道
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

锂离子电池查看更多>电解液查看更多>电解质查看更多>