北极星

搜索历史清空

  • 水处理
您的位置:电力技术正文

静电纺丝技术在超级电容器中的应用

2016-08-24 08:35来源:中国新能源网关键词:超级电容器静电纺丝电极材料收藏点赞

投稿

我要投稿

摘要:静电纺丝是一种新型的非纺织成丝技术,具有适用材料体系广泛、纤维尺寸结构可控、工艺简便等特点,是制备连续纳米纤维的重要方法。静电纺丝技术制备的纳米纤维薄膜因具有巨大的纳米表面和网状孔隙结构可调等优势,在超级电容器领域显示出诱人的应用前景。综述了近年来静电纺丝技术在超级电容器电极材料和隔膜材料方面的研究进展,介绍了碳基、金属氧化物和聚合物电极材料高活性纳米纤维的制备方法及电化学行为,以及静电纺丝无纺布作为隔膜材料显示出的巨大优势,并总结了制约静电纺丝走向商业化的不利因素,如产率低、薄膜强度不足、喷丝不稳定等,最后介绍了近年来静电纺丝技术在结构可控、规模化制备的产业进展,并展望了其在超级电容器领域中的商业化应用前景。

靳瑜1,2,姚辉1,2,陈名海2,刘宁1,李清文2

(1.合肥工业大学材料科学与工程学院,合肥230009;2.中国科学院苏州纳米技术与纳米仿生研究所,苏州215123)

0引言

超级电容器,又称电化学电容器(Electrochemical super-capacitor,ESC),是一种介于常规电容器和充电电池之间的新型储能装置,因具有充电时间短、功率密度大、使用寿命长、温度特性好、节约能源、环境友好等特点,被广泛用于通讯设备、军事装备、家用电器、能源交通等领域。随着环境污染、能源危机等一系列全球问题的加剧,超级电容器已经成为各国政府和科学家研究的焦点,纷纷制定了超级电容器的未来发展计划。

超级电容器由集流体、电极、电解质、隔膜等4部分组成,基本结构如图1所示。研究表明,决定超级电容器电化学性能的关键材料是电极和电解质,而隔膜材料又是影响电解质离子通过率的重要因素;电极影响电容器的比能量,隔膜影响电容器的比功率。因此,从材料角度而言,电极材料和隔膜材料的选择与改性成为超级电容器研究的重点。超级电容器的储能原理分为双电层储能理论和赝电容储能理论,基于此开发的超级电容器分别称为双电层型电容器(EDLC)和法拉第电容器(赝电容型超级电容器),常用的电极材料有碳基材料、金属氧化物和导电聚合物等。在储能方面,双电层电容器主要依赖于电极与电解质相界面形成的双电层,即双电层理论;赝电容型电容器不仅具有双电层理论的贡献,还有电极与电解质相界面发生的快速可逆氧化还原反应的贡献,因此一般赝电容型电容器较双电层电容器具更高的比电容量。无论是双电层型电容器还是赝电容型电容器,当前电极材料的研究热点都集中在获得更大的有效表面积。

静电纺丝技术(Electrospinning)是一种新型的非纺织成丝技术,其结构如图2所示,主要由高压电源、推进装置和收集装置等3部分组成,基本原理是注射器(Syringe)在注射器推进泵(Syringe pump)的推动下,将聚合物溶液(或熔体)推入与高电压能量装置(High-voltage power supply)相连的金属喷头(Metallicneedle)部位,高电压(通常为10~30kV)使得金属喷头内的聚合物液滴加速形成纤维喷射细流,喷射过程中经溶剂蒸发或熔体冷却,最终在接地的收集装置(Grounded collector)上得到纤维状物质。

原标题:静电纺丝技术在超级电容器中的应用
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

超级电容器查看更多>静电纺丝查看更多>电极材料查看更多>